The International Journal of Advanced Manufacturing Technology (2019) 104:4331-4340
https://doi.org/10.1007/s00170-019-04273-1

ORIGINAL ARTICLE

®

Check for
updates

Impact of stochastic industrial variables on the cost optimization
of AISI 52100 hardened-steel turning process

Alexandre Fonseca Torres’ - Fabricio Alves de Almeida’ - Anderson Paulo de Paiva' - Joido Roberto Ferreira’ -
Pedro Paulo Balestrassi' - Paulo Henrique da Silva Campos’

Received: 13 March 2019 / Accepted: 5 August 2019 /Published online: 16 August 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

An optimization problem of the AISI 52100 hard-steel turning process is examined. A new approach is presented in which not
only the machine parameters (cutting speed, feed rate, and depth of cut) but also the stochastic industrial variables of setup time,
insert changing time, batch size, machine and labor costs, tool holder price, tool holder life, and insert price are considered. By
representing each of these variables by a given probability distribution, the goal was to analyze their impact on the total process
cost per piece (K,). Experiments were carried out following a central composite design to model tool life (7), average surface
roughness (R,), and peak-to-valley surface roughness (R,) using a response surface methodology. Then, stochastic programming
was used to model K,,;’s expected value and standard deviation. The approach to the optimization problem aimed to maximize the
probability for the cost to be less than a target value, subject to the experimental space and to maximum values of both R, and R,.
The results were optimal values for the cutting conditions that provide a suitable confidence interval for K,,. The most-significant
industrial variables on K, were ranked. In addition, it was found that, in the addressed case, cutting conditions for maximum tool

life actually increase K,

Keywords Stochastic programming - Hardened-steel turning - Process cost optimization

1 Introduction

Recently, advances in the machining of hardened steels, such
as hard turning, have significantly contributed to product qual-
ity in manufacturing industries [1-3]. In fact, hard turning is a
manufacturing process widely applied in industry. Compared
with grinding, hard turning can provide equal or even better
surface finish [4] with higher material removal rates [5]. Other
benefits provided by hard turning include coolant reduction or
elimination, process cost reduction, productivity increase, im-
proved material properties, and reduced power consumption
[6-8].

Gears, shafts, bearings, bushes, dies, crushing cones, and
jet engine mounting are some of the applications of hardened
steels [9]. In particular, AISI 52100 hardened steel is frequent-
ly used to manufacture bearings, ball screws, gauges, axles,
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and joints because of its strength and corrosion resistance [10].
AISI 52100 is considered to be one of the hard-to-cut steel
alloys [11] in terms of cutting tool materials and economical
machining.

Nevertheless, only a few studies on hardened-steel turning
optimization have considered the impact of industrial vari-
ables and their effect on the variability of the process cost.
Industrial variables include setup time, insert changing time,
batch size, and others [12]. Most of them are stochastic, and
some are not controllable. There are already different
stochastic-programming models available in the literature
[13], and some researchers have already applied them in
manufacturing systems to analyze setup times [14], batch size
[15], and machines and labor [16]. Within this context, this
study aimed to optimize the total process cost per piece for
AISI 52100 hardened-steel turning by also taking into account
the following stochastic variables: setup time, insert changing
time, batch size, machine and labor cost, tool holder price, tool
holder life, and insert price.

This work is structured as follows. In Section 2, a review of
the literature about response surface methodology (RSM), to-
tal process cost per piece in turning, and stochastic program-
ming is presented. In Section 2.3, an equation used to calculate
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the variance of a continuous function dependent on stochastic
variables is given. The materials and methods are described in
Section 3, including the designed experiments and the math-
ematical modeling. Results and discussion are presented in
Section 4. The equation was validated by a real case study
and using Monte Carlo simulation. Tool life maximization
and its impact on machining cost were also analyzed quanti-
tatively. Finally, Section 5 presents the conclusions.

2 Literature review

2.1 Design of experiments and mathematical
modeling

Many studies have already used the design of experiments
(DOE) strategy to analyze different sorts of industrial process,
such as resistance spot welding [17, 18], the 3D-printing pro-
cess [19], laser beam machining [20], and hard turning [21]. In
particular, research on hard turning has progressed in different
directions over time, but a large number of studies have fo-
cused on mathematical modeling and optimization. In such
approaches, DOE is frequently used, because it makes possi-
ble the analysis of how each of the decision variables and their
interactions affect the results of interest [22]. DOE often re-
duces the number of experiments needed to analyze the pro-
cess and to build analytical models of the results of interest,
which decreases the experimental cost [23].

The analytical models are commonly built by the RSM.
The RSM is a DOE method composed of statistical and math-
ematical techniques used to model an objective function de-
pendent on multiple input variables [24]. The RSM is known
as a practical and economical experimental method and has
recently been used to model outputs of machining processes
[20, 21, 25].

A response surface model can be represented by a second-
order polynomial, as in Eq. (1).

k k
Y =y + glﬁixiﬁ‘ glﬁn‘x% + X YBxix;+e (1)

i<j

For instance, a central composite design (CCD) [24] can be
used to define the experimental runs. After the experiments
are executed, a regression model, such as the ordinary least-
squares (OLS) method, is used to build the mathematical mod-
el. If the model presents satisfactory adjustments and resid-
uals, then it is possible to formulate and solve an optimization
problem.

In hardened-steel turning optimization, surface roughness,
tool life, and other outputs are generally represented by re-
sponse surface models. Some other process outputs, however,
can be directly calculated by equations available in the
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literature and, for this reason, do not necessarily require the
use of the RSM. One example is the process cost, which is
described in Section 2.2.

2.2 Total process cost per piece in turning

The total cost of machining a piece is considered to be one of
the most important aspects in metal cutting industries for
manufacturing a product [1]. It comprises manufacturing
costs, which are directly related to the process (such as ma-
chines, labor, and tools), and other indirect costs (quality con-
trol, raw materials, indirect labor, etc.) [26]. The manufactur-
ing cost of a piece is also defined as the sum of operation, tool,
and tool change costs per piece [21]. Diniz, Marcondes e
Copini [12] provided Eq. (2), which is used to calculate the
manufacturing cost, also known as the total process cost per
piece (K,).

Kp:Tt

(Sh+Sn)  Ci (K,, K,-) 2

60 T\Ns TN,
In Eq. (2), T; is the total cycle time, measured in minutes;
S,, + Sy, are, respectively, labor and machine costs per hour; C,
is the cutting time (min); 7 refers to tool life (min); Ky, is the
tool holder cost; Ny, is the average tool holder life, measured
in edges; K; is the insert cost; and N; is the number of cutting
edges of the insert. 7, is calculated by Eq. (3).
N,

t
T,=C, 4t +t,+ L +—=4
=Gttt +—

t, N;.
Tt:Ct+ts+§+7’t1 (3)
where ¢, is the secondary time, £, is the tool approximation and
retreat time, ¢, is the setup time, Z is the batch size, N, is the
number of tool changes in the same batch, and ¢ is the insert
changing time. C, is calculated by Eq. (4).

1f><7T><D

C,=—1"-""—
"71000 x f % V.

(4)
where I/is the piece length, d is the piece diameter, fis the feed
rate, and V. is the cutting speed. Equation (5) is used to cal-
culate the number of tool changes (V,).

N;:Aﬁm[m1<ziﬁq>} (5)

where 7(Z5—1) is the smallest integer number greater than or
equal to Z%—l.

Based on Egs. (2), (3), (4), and (5), there are many variables
that influence the total process cost per piece (K,).
Among them, cutting speed (V.) and feed rate (f) are
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quantitative cutting conditions. Along with depth of cut
(d), these three machine parameters have been used as
decision variables in several works on hard-turning pro-
cess optimization [4, 10, 27, 28]. The most common
results of interest are average surface roughness, mate-
rial removal rate, cutting forces, tool wear, process cost,
and energy consumption. When it comes to the
manufacturing industry, the optimization of results relat-
ed to cost, productivity, and quality is frequently the
main goal [29].

Some industrial variables are stochastic and uncontrollable,
which means that production systems must be aware of how
the variability affects their results. Among the variables relat-
ed to the calculation of K,,, the following ones have already
been pointed out and investigated in previous studies.

* Setup time (#,) and insert changing time (#,): Samaddar
[14] presented some findings on how the setup time (z,)
variance may affect a production system. In fact, it is pos-
sible that setup times are stochastic in practice, so the
solutions of deterministic models may result in deteriorat-
ed quality if applied to real-life problems, according to Tas
et al. [30]. The authors also stated that there is always
inherent variability in the execution time of a specific ac-
tivity. Because insert changes are setup activities, the in-
sert changing time (#;) should also be considered a stochas-
tic variable.

* Batch size (Z), labor, and machine costs (S,, + S;):
An increasing number of companies have been
adopting a just-in-time philosophy [31]. As a result,
batch sizes (Z) may vary according to the customers’
demands, which are usually considered random [32].
In addition, Francas et al. [16] investigated how ma-
chine and labor flexibility may reduce production
costs of manufacturing networks. In these scenarios,
machine and labor costs (S,, + S;,) also have a sto-
chastic nature.

» Tool holder price (Ky,), insert price (K;), and tool holder
life (Ng,): Canyakmaz et al. [33] studied the impact of
stochastic item prices on the optimal inventory setting.
According to the authors, price uncertainties are one of
the most critical challenges of manufacturers, and such
uncertainties may be caused by unstable economies,
strikes, exchange rates, and other contributing factors.
Hence, tool holder price (Ky,) and insert price (K;) may
be included in the group of stochastic variables related to
K,,. Finally, in real-life operations, predicting the tool hold-
er life (Vy,) is extremely difficult, but it may also be ap-
proximated to a given probability distribution.

Therefore, some of the industrial variables related to K,
could be included in the optimization problem using
stochastic-programming methods.

2.3 Stochastic programming
2.3.1 Variance of a continuous function of normal variables

There are already different strategies to model the variance of
analytical models y = z' 8 [13, 25], which are commonly used
in the RSM. However, it is also possible to model the variance
of a general continuous function dependent on stochastic
variables.

Let f(x) be a continuous function dependent on vector x

= Bl} composed by two normally distributed variables.
2

Considering a Taylor series limited to the linear term and
applied for a, one obtains Eq. (6)

FX) = f(x1,72) = ftgg 1) = +n§ (1) af(;)lc;xz) (6)
or Eq. (7)
of (x1,
Ferx2) S (g ) = (¥1711,) f(;Tllxﬁ
of (x1,
+ (2, ﬂ%zm )

Taking both sides to the second order and applying the
expected value, one obtains

E[_/[(XhXZ)_f(/l)q ) sz):lz

- E[(xluxl) %ﬁxz) + (2, %I;xz)}z "
or
Varlf (xi,%)] = E{ {("l‘/txl) %;;xz)r + {(xz—uxz) af‘(éc;;xz)] 2}
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Hence, the variance of a function of two independent var-
iables evaluated in the mean vector u becomes

Var(f (x)] = [afgiil)ra; + [%t‘)ro@ +2
of (W] [af (m)

(10)

x |: 8x1 :||: 8x2 :|0'x10'xz

Likewise, the variance of a function dependent on » vari-
ables is
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In the format of matrices, it is possible to use Eq.
(11) to obtain the standard deviation (SD) of f (x) as in
Eq. (12)

SDIf (x)] = v/Var[f (x)] = \/Vf(x)" £V (x)

where Vf(x) is the gradient vector of f (x), and X' is the
variance and covariance matrix of the variables in x, as

(12)

in Eq. (13).
U)zﬂ oy

=] (13)
lex,, o Xn

2.3.2 Modeling the probability of attending a maximum cost

Equation (14) presents an optimization problem whose
goal is to maximize the probability of the objective
function f (x) being less than or equal to its upper
specification limit (USL) submitted to the problem con-
straints g; ().

UsL

max Plf(x)<USL = | o{El/(x)], Varlf(x)]}
: (14)
s.t.:
g(X)Su; Vi=1,..k

where {} is the probability density function composed
by the expected value and the standard deviation of f
(x) [13].

For instance, if f (x) is the mathematical model for
the process cost, then the goal is to maximize the prob-
ability of the cost being less than or equal to a

Fig. 1 a AISI 52100 hard-turning
process with wiper inserts and b
surface roughness measurement
positions
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predefined value USL. The constraints g;(x) may in-
clude the experimental space constraint or even other
output models that are not defined as objective func-
tions, but as other constraints of the problem: surface
roughness, material removal rate, and others.

3 Materials and methods
3.1 Experimental procedure

Experiments were executed in a CNC Nardini Logic
175 lathe (Fig. la), with a maximum rotation speed of
4000 rpm and a cutting power of 5.5 kW. The work-
pieces of AISI 52100 had the following chemical com-
position: 1.03% C, 0.23% Si, 0.35% Mn, 1.40% Cr,
0.04% Mo, 0.11% Ni, 0.001% S, and 0.01% P. Their
initial dimensions were @ 49 x 50 mm, and they were
quenched and tempered, providing a hardness between
49 and 52 HRC up to a depth of 3 mm below the
surface. The hard-turning process was executed with
wiper mixed ceramic (Al,O3 + TiC) inserts (CNGA
120408 SO01525WH), coated with a thin layer of titani-
um nitride (TiN). The tool holder had a negative geom-
etry with ISO code DCLNL 1616H12 and an entering
angle xr = 95°.

To measure tool life, wiper inserts were worn until
their flank wear (VB(¢) indicator on the tool tip reached
0.30 mm. This was the adopted criterion for the end of
tool life, and it was measured by an optical microscope.
The arithmetic mean roughness (R,) and the maximum
peak-to-valley roughness (R,), both in micrometers, were
measured at the end of life of each wiper insert. These
responses were measured using a portable roughmeter
set to a cutoff length of 0.8 mm. The measurements
were taken at three different points of the workpiece,
as indicated in Fig. 1b. Each point was measured four
times, and their mean value was considered. More de-
tails of the method are described elsewhere [34].

< Tool Holder

__*-€G 6050 wiper insert
J

=

4

) Counterpoint

AISI 52100
Workpiece

Workpiece
| 3.7

—
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3.2 Mathematical models and optimization problem

The RSM was applied to build analytical models for
tool life (7), average surface roughness (R,), and max-
imum peak-to-valley surface roughness (R;). Using the
CCD, 19 experiments were carried out: eight factorial
points, six axial points, and five center points. The de-
cision variables were cutting speed (V,), feed rate (f),
and depth of cut (d). Table 1 presents the decision var-
iables, their units, and levels, both with coded and
decoded values.

The distance from the axial points to the center point

was calculated by p = v/k", where k is the number of
factorial levels, and »n is the number of decision vari-
ables. Table 2 shows the experimental data and results.
After the experiments, the OLS method was used to
build analytical second-order polynomial models for 7,
R,, and R, using Eq. (1), and their coefficients are pre-
sented in Table 3. The models’ adjustments were con-
sidered adequate, because their Rzadj values were higher
than 89%.

The total process cost per piece (K},), total cycle time (77),
and cutting time (C,) were calculated using Egs. (2), (3), and
(4), respectively, and the values of the industrial variables are
presented in Table 4. The material removal rate (MRR) was
obtained by simply multiplying cutting speed by feed rate by
depth of cut.

As justified in Section 2.2, out of the 12 industrial
variables presented in Table 4, only seven were modeled
as stochastic: setup time (t,), insert changing time (%),
batch size (Z), machine and labor costs (S, + S,,), tool
holder price (Ky,), average tool holder life (Ny,), and
insert price (K)).

The batch size is the only discrete variable and fol-
lows a Poisson distribution, which can be approximated

to a normal distribution using Z = X—J/—\’\ [35]. For the other

six variables, which are continuous ones, values were
generated for each variable using different continuous
probability distributions. However, the analysis refers to
a period of time, so the mean values of the variables
were calculated for every week during 3 months of

Table 1 Levels of the decision variables

Decision variables  Levels

Coded levels —-1.682 —1.000 0.000 1.000 1.682
V. (m/min) 186.4 200.0 220.0 240.0 253.6
f (mm/v) 0.132 0.200 0300  0.400  0.468
d (mm) 0.100 0.150 0225 0300 0.351

Source: Campos et al. [34]

Table 2  Experimental data and results

Run Decision variables Results of interest

V. f d T R, R K, T, C, MRR

1 200 020 0.15 1721 025 1.41 0.76 0.86 0.19 6.00
2 240 020 0.15 11.37 027 1.72 0.76 0.83 0.16 7.20
3 200 040 0.15 596 031 212 0.72 0.77 0.10 12.00
4 240 040 0.15 4.48 030 2.15 0.72 0.76 0.08 14.40
5 200 020 030 942 025 1.45 0.84 0.87 0.19 12.00
6 240 020 030 737 025 1.58 0.82 0.84 0.16 14.40
7 200 040 030 4.03 034 2.01 0.79 0.78 0.10 24.00
& 240 040 030 6.10 029 1.99 0.68 0.75 0.08 28.80
9 18 030 022 951 029 1.69 0.74 0.81 0.14 12.28
10 254 030 022 6.86 026 1.81 0.71 0.77 0.10 16.76
11 220 0.13 022 1418 021 1.54 089 095 027 6.29
12220 047 022 412 031 254 072 0.75 0.07 22.75
13220 030 0.10 942 031 194 0.70 0.79 0.12 6.60
14 220 030 035 492 031 1.74 080 0.80 0.12 23.10
15 220 030 022 489 026 1.81 081 0.80 0.12 1452
16 220 030 022 500 026 1.71 080 0.80 0.12 1452
17 220 030 022 477 026 1.71 081 0.80 0.12 1452
18 220 030 022 501 026 1.71 080 0.80 0.12 14.52
19 220 030 022 512 026 1.71 080 0.80 0.12 14.52

Source: Campos et al. [34]

simulation, and the expected values were computed.
The samples composed by the expected values follow a
normal distribution, according to the central limit theo-
rem [36]. For this reason, normal distributions were used
to represent the stochastic variables. The relative stan-
dard deviation was 10%. Because this is a theoretical
analysis, there was no evidence to infer that the stochas-
tic variables were significantly correlated in the present

Table 3  Coefficients of the RS models for 7, R, and R,
Coefficients RS models

T (x) R, (x) R, (x)
Bo 4.963 0.260 1.733
Bi -0.861 - 0.007 0.048
B2 -3.055 0.028 0.278
Bs — 1.440 0.000 -0.052
B 1.115 0.005 -0.010
B2 1.456 0.000 0.092
Bas 0.756 0.018 0.021
Bia 1.060 -0.010 - 0.054
Bi3 0918 -0.008 -0.029
B3 1435 0.005 -0.021
R 99.74% 98.66% 94.35%
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Table 4 Industrial variables and
their parameters

Stochastic variables Unit Symbol Mean St. Dev.
Setup time min t, 60 6
Insert changing time min t; 1 0.1
Batch size pieces VA 1000 100
Machine and labor costs US$ St Sy 50.00 5.00
Tool holder price Us$ K 125.00 12.50
Average tool holder life edges N 1000 100
Insert price US$ K; 31.25 3.13
Deterministic variables

Secondary time min t, 0.5 -
Tool approximation and retreat time min t, 0.1 -
Number of cutting edges on the insert units N; 4 -
Piece length mm ly 50 -
Piece diameter mm D 49 -

study, so the correlations (p) among the seven stochastic
variables were considered insignificant. Equation (11)

_ FKF(”)]Z 2+ [aK,,(mr 2+ {aK,,w)]zaz .

o, or; oz

Var[K,(w)]

was used to model the standard deviation of K,,, which
leads to Eq. (15).

The reason why the other five variables were treated as
deterministic is that their variances were considered insig-
nificant compared with the seven stochastic variables for
this study. Secondary time, in this particular case, consisted
of 30 s only, so its variance was not relevant compared
with the other variables. Tool approximation and retreat
time are executed by the machine, so the variance among
times was almost null. Because the same insert was used,

Table 5 Partial derivatives of K, ] - .
on p Variables Partial derivatives
t
P 0Ky _ (Su+Sh)
%, 607
I R .
0Ky _ N, (Sw+Sh)
o~ 60Z
Z
oK, _ (t=t)(Su+Si)
oz 6072
+
S+ S, &K,
A(Sm+Sk) — 60
K, .
th K, C
0Ky — TNy
N
th E)K,, — CIth
ONg — TNp2
Ki K, _ C
oK; — TN,

the number of its cutting edges was in fact deterministic
(always four cutting edges). The piece length and diameter
did not present significant variances, as they were all sup-
plied according to narrow specification limits.

The partial derivatives of the stochastic variables are pre-
sented in Table 5, and the optimization problem is shown in
Eq. (16),

USL st
max | qb{E[K,,(x, p)}, Var[K,,(x, p)]} x"x<p?R,(x)<USLg,
T R/(x)<USSg,

(16)

where x is a vector composed of the decision variables, and p
is a vector composed of the expected values of the seven
stochastic industrial variables presented in Table 4. The goal
was to determine the optimal levels for the machine parame-
ters that present good results for K, considering the variances
of the industrial variables. More specifically, the optimization

Table 6 Results in optimal cutting conditions

Outputs

C,(min) 7,(min) 7 (min) R,(um) R,(um) MRR (cm>/min)
0.08 0.75 593 0.28 2.12 26.8

@ Springer
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Fig. 2 Surface plot with V., (S)
and ffor a E[K,,] and b SD[K,,]

problem was to maximize the probability for the cost to be less
than the USL of US$0.90, submitted to the experimental space
and to the respective USLs of 0.8 um for R, and 4 um for R,
which correspond to the N6 ISO roughness grade number
[37].

4 Results and discussion
4.1 Validation of K,, variance

Before Eq. (16) was solved, the result of Eq. (15) was com-
pared with a Monte Carlo simulation at the center points of the
cutting conditions (Table 1). Equation (15) resulted in an ex-
pected value E[K,] = US$0.853 and a standard deviation
SD[K,,] = US$0.070. With the exact same conditions, Monte
Carlo simulation with 10,000 replications resulted in E[K,] =
US$0.852 and SD[K,,] = US$0.070.

4.2 Problem solution

The generalized reduced gradient was used to solve the opti-
mization problem presented in Eq. (16). The problem was
built using Microsoft Excel software and its Solver add-in.
The optimal levels of the decision variables were 240.9
m/min for cutting speed (V.), 0.42 mm/rev for feed rate (f),
and 0.26 mm for depth of cut (d). As a result, the 95% confi-
dence interval (CI) for K, was US$0.73 + 0.12, and the max-
imum probability of K, to be less than US$0.90 would be
99.71%. Other results are summarized in Table 6.

Fig. 3 Surface plot with V., (S)
and d for a E[K},] and b SD[K,]

$0.84

$0.78
EKp]

$0.72

$0.66

b)

$0.08

SDIKRT 4607

$0.06
0.1

4.3 Effects of cutting conditions on K,

Figures 2, 3, and 4 show the response surfaces for £[K},] and
SD[K,,] for each pair of decision variables. In each figure, the
third decision variable was set in its optimal value. Figures 2 a,
3 a, and 4a show that the E[K,] varies significantly (from
US$1.00 to US$0.66), depending on the levels of the decision
variables. It is shown that a low expected value for K, can be
achieved by setting high values for cutting conditions.
However, the values of SD[K,] did not vary as much (between
US$0.06 and US$0.08), as shown in Figs. 2b, 3b, and 4b.

4.4 Effects of industrial variables on K,

The individual results of the partial derivatives do not repre-
sent the impact of the industrial variables in a practical way,
because they only represent their impact per unit. For instance,
at the optimal cutting conditions, if #; changes from 1 to 2 min
(a 100% increase), then K, rises approximately US$0.01.
When it comes to Sj, + S, if it becomes US$1.00 more ex-
pensive (only a 2% increase), then K, also increases by
US$0.01.

Therefore, to measure the real impact of the industrial var-
iables, a full factorial design composed of 128 combinations
was designed. Levels — 1 and + 1 were established considering
a six sigma confidence interval, as shown in Table 7.

After calculating K, for all combinations, machine
and labor costs (S, + S,,) were by far the most signif-
icant variable, followed by insert cost (K;), setup time
(t,), and batch size (2). If S, + S, increases 30% (or
three sigma), K, increases US$0.19. Such an impact is

$0.07

$0.07
SDIKp]

$0.06

$0.06
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Fig. 4 Surface plot with fand d
for a E[K,,] and b SD[K,)] a)

$1.00
5090
E[KP] 5080
$0.70

0.1

10 times greater than that of the second-most-significant
variable (K;). The other variables alone did not present
a significant impact. Yet, some two-variable interactions
also had significant effects, such as #, and Z, #, and S,
+ S, and Z and §;, + S,,.

It is also possible to estimate the potential impacts of im-
proving some of the industrial variables. In this case study, if
setup ¢, was decreased from 60 to 9 min—a single-minute
setup, as aimed at by single-minute exchange of dies
(SMED) applications—and #; was reduced to 0.5 min, K}, re-
duced 6.5% (from US$0.73 to US$0.68). Decision makers
can use these estimations to analyze the feasibility of
implementing SMED or other methodologies in their
manufacturing processes, instead of focusing only on cutting
parameters.

5.4. Minimal cost versus maximum tool life

The solutions of two optimization problems were
compared: (a) Eq. (16) and (b) maximizing the tool
life’s response surface model [7(x)] alone by varying
cutting conditions submitted to the same constraints, as

Table 7  Levels of the variables in the full factorial design

Variable Level — 1 Level + 1 + 30 impact on K,
1 30 90 U$ 0.02

t; 0.7 1.3 U$ 0.00

A 700 1300 —-U$0.01
St Si 35.00 65.00 U$0.19

K 87.50 162.5 U$ 0.00

Nin 700 1300 —-U$0.00

K; 21.88 40.63 U$ 0.03

@ Springer

b)

$0.08
$0.07
SDIKp] $0.07

.07
$0.0 03

0.1

shown in Eq. (17). Table 8 shows the solutions of both
cases.

s.t.:
XX <p?
max T'(x =P
ax T )Ra(x)SUSLRa (17)
Rt(X)SUSLRt

The solution of Eq. (17) was a maximum tool life of 17.18
min. However, the 95% confidence interval for K, was
US$0.85 + 0.15 for 95%, and the maximum probability for
K, to be less or equal to US$0.90 was 75.47%. More specif-
ically, maximizing the tool life resulted in a 16.9% increase in
E[K,] and a 18.9% increase in SD[K,,].

To maximize the tool life, in Eq. (17), the levels of the
decision variables (cutting speed, feed rate, and depth of cut)
were set to much lower values compared with Eq. (16), as
shown in Table 8. Tool life showed a 187.5% increase.
However, with lower levels of cutting speed and feed rate,
the cutting time (C,) rose from 0.08 to 0.22 min, as in Eq.
(3), which meant a 192.6% increase. In other words, the
highest tool life would be useless, because the cutting time
would increase as well. The number of tool changes (V)
would be the same (12) within a batch size of 1000 pieces,
and the average number of pieces cut by one cutting edge
would be almost the same: 78 by solving Eq. (16) and 77
for Eq. (17).

Another important finding was that, after tool life was max-
imized, the total cycle time (7}) increased from 0.748 to 0.894.
This 19.5% increase results in an increase of K, as shown in
Eq. (2).

Hence, maximizing the tool life by changing the cutting
conditions does not necessarily reduce the process cost—it
may actually increase it, as observed in this case study.
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Table 8 Optimal cutting

conditions and corresponding Problem Cutting conditions
outputs
V. f d 95% Cl for K,, T (min) MRR
(m/min) (mm/ver) (mm) us$) (cm>/min)
Eq. (16) — K}, (x, p) 240.9 0.42 0.26 0.73 £0.12 5.93 26.8
Eq.(17) - T (x) 206.0 0.17 0.17 0.85+0.15 17.18 5.7

5 Conclusions

The present study aimed to optimize the process cost of the
AISI 52100 hardened-steel turning process. The cutting con-
ditions were defined considering the impact of the main in-
dustrial variables on the cost. Stochastic programming was
coupled with the RSM to represent the variables and formulate
the optimization problem. The main results can be summa-
rized as follows.

» The variance of a general continuous function was dem-
onstrated and used to model the variance of the total pro-
cess cost per piece (K,). The demonstrated formula was
validated using Monte Carlo simulation.

* Instead of creating unnecessary second-order polynomials
and, thus, raising the variances of the models, direct for-
mulas available in the literature were used to represent the
cutting time (C,), total cycle time (7), and K,,.

» The effects of cutting speed, feed rate, and depth of cut on
K,, were measured, and response surfaces were plotted.
These cutting conditions presented significant impacts
on the expected value of K,,, but not on its standard
deviation.

* The effects of the industrial variables on K}, were mea-
sured based on partial derivatives. At optimal cutting con-
ditions, the most-significant variables on K, were machine
and labor costs, insert price, setup time, and batch size. If
setup time is reduced from 60 to 9 min, for instance, K, is
expected to reduce 6.5%. Hence, instead of focusing only
on cutting parameters, this study proves that industrial
variables also have an impact on the process cost.

» The results of this particular case study also showed that
maximizing tool life increased the process cost, because it
required lower levels for the cutting conditions, which
increased the C,, T}, and K,.

It is planned to apply the stochastic programming method
in this work to other processes in future research.
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